China manufacturer WREN Hydraulic Cylinder Series CLRG20010 Double-Acting High Tonnage Cylinder (200 ton) vacuum pump ac system

Product Description

 

Product Description

Capacity  Stroke  Model Min Height Outside Diameter Effective Area Oil Capacity Plunger Diameter Weight 
(Ton) (mm)  (mm)  (mm) (cm²) (cm³) (mm) (Kg)
Push Pull         Push Pull Push Pull    
10 4. 1 254 CLRG1571 409 76 14.5 5.9 368 149 33 12
10 4. 1 305 CLRG1012 457 76 14.5 5.9 442 180 33 14
50 22.6 150 CLRG506 325 127 70.8 32.3 1062 484 70 30
50 22.6 300 CLRG5012 475 127 70.8 32.3 2124 969 70 52
100 44 50 CLRG 1002 182 188 132. 7 61.9 664 310 95 27
100 44 100 CLRG 1004 232 188 132.7 61.9 1327 619 95 33
100 44 150 CLRG 1006 282 188 132.7 61.9 1991 929 95 37
100 44 200 CLRG 1008 332 188 132.7 61.9 2654 1238 95 44
100 44 250 CLRG1571 382 188 132.7 61.9 3318 1548 95 50
100 44 300 CLRG10012 432 188 132.7 61.9 3981 1857 95 57
150 67.9 50 CLRG 1502 196 216 201 97 1005 485 115 47
150 67.9 100 CLRG 1504 246 216 201 97 2571 970 115 57
150 67.9 150 CLRG1506 296 216 201 97 3015 1455 115 67
150 67.9 200 CLRG 1508 346 216 201 97 4571 1940 115 77
150 67.9 250 CLRG15571 396 216 201 97 5571 2425 115 87
150 67.9 300 CLRG15012 446 216 201 97 6030 2910 115 97
200 93 50 CLRG2002 235 242 265.9 133. 1 1329 665 130 67
200 93 150 CLRG2006 335 242 265.9 133. 1 3988 1996 130 92
200 93 250 CLRG2571 435 242 265.9 133. 1 6647 3327 130 117
250 107 50 CLRG2502 236 288 366.4 152.6 1832 763 165 105
250 107 150 CLRG2506 336 288 366.4 152. 6 5496 2289 165 141
250 107 250 CLRG25571 436 288 366.4 152. 6 9160 3815 165 176
300 121 50 CLRG3002 350 325 456.2 172. 6 2281 863 190 204
300 121 150 CLRG3006 412 325 456.2 172. 6 6843 2589 190 252
300 121 250 CLRG3571 512 325 456.2 172. 6 11405 4315 190 299
400 138 50 CLRG4002 370 367 559.9 196.8 2799 984 215 281
400 138 150 CLRG4006 470 367 559.9 196.8 8399 2952 215 342
400 138 250 CLRG4571 570 367 559.9 196.8 13998 4920 215 405
500 168 50 CLRG5002 400 405 730. 6 239. 7 3653 1198 250 411
500 168 150 CLRG5006 500 405 730. 6 239. 7 10959 3595 250 493
500 168 250 CLRG5571 600 405 730. 6 239. 7 18265 5992 250 575
600 207 50 CLRG6002 445 450 855.3 295.4 4277 1477 267 494
600 207 150 CLRG6006 545 450 855.3 295.4 12830 4431 267 586
600 207 250 CLRG6571 645 450 855.3 295.4 21383 7385 267 678
800 252 50 CLRG8002 695 515 1164 360 5820 1800 320 759
800 252 150 CLRG8006 595 515 1164 360 17460 5400 320 885
800 252 250 CLRG8571 695 515 1164 360 29100 9000 320 1019
1000 380 50 CLRG 10002 535 580 1465. 7 541.7 7328 2708 342 1012
1000 380 150 CLRG 10006 635 580 1465. 7 541.7 21985 8125 342 1168
1000 380 250 CLRG10571 735 580 1465. 7 541.7 36418 13543 342 1325

Company Profile

Why Choose Us

Quality control

Certifications

Exhibition photos

Our Customers

 

FAQ

Q: How to order?
A: Inquire with us→ sample customization→ use scenario inform→ receive our product design recommendation→ negotiate details→ confirm the sample→ CHINAMFG the contract/deposit→mass production→ the goods are ready→ balance/delivery→ further cooperation.

Q: How about the sample order?
A: We can provide the sample price, please contact us for details.

Q: Which shipping method is available?
A: By sea, by air, or by express (DHL, UPS, FedEx). Other shipping methods are also available, please contact us for details.

Q: How long is the delivery [production] and shipment?
A: The delivery time depends on the quantity you ordered. Shipped from the factory, within 3 days for standard parts and within 10 days for non-standard parts.

Q: My package is missing some products, what can I do?
A: Please contact our support team, we will confirm the contents of your order with the packaging, and compensate for the shipment. We apologize for the inconvenience.

Q: How to confirm the payment?
A: We accept T/T payment method. The first type is 30% deposit order confirmed, and the remaining 70% is paid before shipment, and the second type is 100% paid before shipment. Other payment methods are also acceptable, please contact us before you pay by other payment methods.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature
Acting Way: Double Acting
Working Method: Straight Trip
Adjusted Form: Switching Type
Customization:
Available

|

hydraulic cylinder

What advancements in hydraulic cylinder technology have improved sealing and reliability?

Advancements in hydraulic cylinder technology have continuously contributed to improving sealing and reliability in hydraulic systems. These advancements aim to address common challenges such as leakage, wear, and failure of seals, ensuring optimal performance and longevity. Here are several key advancements that have significantly improved sealing and reliability in hydraulic cylinders:

1. High-Performance Sealing Materials:

– The development of advanced sealing materials has greatly improved the sealing capabilities of hydraulic cylinders. Traditional sealing materials like rubber have been replaced or enhanced with high-performance materials such as polyurethane, PTFE (polytetrafluoroethylene), and various composite materials. These materials offer superior resistance to wear, temperature, and chemical degradation, resulting in improved sealing performance and extended seal life.

2. Enhanced Seal Designs:

– Advancements in seal designs have focused on improving sealing efficiency and reliability. Innovative seal profiles, such as lip seals, wipers, and scrapers, have been developed to optimize fluid retention and prevent contamination. These designs provide better sealing performance, minimizing the risk of fluid leakage and maintaining system integrity. Additionally, improved seal geometries and manufacturing techniques ensure tighter tolerances, reducing the potential for seal failure due to misalignment or extrusion.

3. Integrated Seal and Bearing Systems:

– Hydraulic cylinders now incorporate integrated seal and bearing systems, where the sealing elements also serve as bearing surfaces. This design approach reduces the number of components and potential failure points, improving overall reliability. By integrating seals and bearings, the risk of seal damage or displacement due to excessive loads or misalignment is minimized, resulting in enhanced sealing performance and increased reliability.

4. Advanced Coatings and Surface Treatments:

– The application of advanced coatings and surface treatments to hydraulic cylinder components has significantly improved sealing and reliability. Coatings such as chrome plating or ceramic coatings enhance surface hardness, wear resistance, and corrosion resistance. These surface treatments provide a smoother and more durable surface for seals to operate against, reducing friction and improving sealing performance. Moreover, specialized coatings can also provide self-lubricating properties, reducing the need for additional lubrication and enhancing reliability.

5. Sealing System Monitoring and Diagnostic Technologies:

– The integration of monitoring and diagnostic technologies in hydraulic systems has revolutionized seal performance and reliability. Sensors and monitoring systems can detect and alert operators to potential seal failures or leaks before they escalate. Real-time monitoring of pressure, temperature, and seal performance parameters allows for proactive maintenance and early intervention, preventing costly downtime and ensuring optimal sealing and reliability.

6. Computational Modeling and Simulation:

– Computational modeling and simulation techniques have played a significant role in advancing hydraulic cylinder sealing and reliability. These tools enable engineers to analyze and optimize seal designs, fluid flow dynamics, and contact stresses. By simulating various operating conditions, potential issues such as seal extrusion, wear, or leakage can be identified and mitigated early in the design phase, resulting in improved sealing performance and enhanced reliability.

7. Systematic Maintenance Practices:

– Advances in hydraulic cylinder technology have also emphasized the importance of systematic maintenance practices to ensure sealing and overall system reliability. Regular inspection, lubrication, and replacement of seals, as well as routine system flushing and filtration, help prevent premature seal failure and optimize sealing performance. Implementing preventive maintenance schedules and adhering to recommended service intervals contribute to extended seal life and enhanced reliability.

In summary, advancements in hydraulic cylinder technology have led to significant improvements in sealing and reliability. High-performance sealing materials, enhanced seal designs, integrated seal and bearing systems, advanced coatings and surface treatments, sealing system monitoring and diagnostics, computational modeling and simulation, and systematic maintenance practices have all played key roles in achieving optimal sealing performance and increased reliability. These advancements have resulted in more efficient and dependable hydraulic systems, minimizing leakage, wear, and failure of seals, and ultimately improving the overall performance and longevity of hydraulic cylinders in diverse applications.

hydraulic cylinder

Customization of Hydraulic Cylinders for Marine and Offshore Applications

Yes, hydraulic cylinders can be customized for use in marine and offshore applications. These environments present unique challenges, such as exposure to corrosive saltwater, high humidity, and extreme operating conditions. Customization allows hydraulic cylinders to meet the specific requirements and withstand the harsh conditions encountered in marine and offshore settings. Let’s delve into the details of how hydraulic cylinders can be customized for marine and offshore applications:

  1. Corrosion Resistance: Marine and offshore environments expose hydraulic cylinders to corrosive elements, such as saltwater. To mitigate corrosion, hydraulic cylinders can be customized with materials and surface treatments that provide enhanced corrosion resistance. For example, cylinders can be constructed from stainless steel or coated with protective layers like chrome plating or specialized coatings to withstand the corrosive effects of saltwater.
  2. Sealing and Environmental Protection: Hydraulic cylinders for marine and offshore applications require robust sealing systems to prevent water ingress and protect internal components. Customized sealing solutions, such as high-quality seals, wipers, and gaskets, can be employed to ensure effective sealing and resistance to water, debris, and contaminants. Additionally, hydraulic cylinders can be designed with protective features like bellows or boots to shield vulnerable areas from environmental elements.
  3. High-Pressure and Shock Resistance: Marine and offshore operations may involve high-pressure hydraulic systems and encounters with dynamic loads or shocks. Customized hydraulic cylinders can be engineered to withstand these demanding conditions. They can be designed with reinforced construction, thicker walls, and specialized components to handle high-pressure applications and absorb shock loads, ensuring reliable performance and durability.
  4. Temperature and Fluid Compatibility: Marine and offshore applications can expose hydraulic cylinders to extreme temperature variations and specific fluid requirements. Customization allows the selection of materials, seals, and fluids compatible with the anticipated temperature range and the specific fluid being used. Hydraulic cylinders can be tailored to maintain optimal performance and reliability under challenging temperature conditions and with the designated fluid type.
  5. Mounting and Integration: Customized hydraulic cylinders can be designed to facilitate easy integration and mounting within marine and offshore machinery. Mounting options can be tailored to suit the available space and structural requirements of the equipment. Additionally, customized hydraulic cylinder designs can incorporate features for easy maintenance, accessibility, and connection to the hydraulic system, ensuring convenient installation and serviceability in marine and offshore applications.

In summary, hydraulic cylinders can be customized to meet the unique demands of marine and offshore applications. Customization enables the integration of corrosion-resistant materials, robust sealing systems, high-pressure and shock-resistant designs, temperature and fluid compatibility, as well as optimized mounting and integration features. By tailoring hydraulic cylinders to the specific requirements of marine and offshore environments, reliable performance, extended service life, and efficient operation can be achieved in these challenging operating conditions.

hydraulic cylinder

What are the common signs of wear or leakage that indicate hydraulic cylinder issues?

Hydraulic cylinders are critical components in hydraulic systems, and wear or leakage can lead to performance issues and potential system failures. It is important to be aware of the common signs that indicate hydraulic cylinder problems. Here’s a detailed explanation of the common signs of wear or leakage that indicate hydraulic cylinder issues:

1. Fluid Leakage:

– Fluid leakage is one of the most obvious signs of hydraulic cylinder problems. If you notice hydraulic fluid leaking from the cylinder, it indicates a seal failure or damage to the cylinder. Leaking fluid may be visible around the rod, piston, or cylinder body. It is important to address fluid leakage promptly as it can lead to a loss of system efficiency, contamination of the surrounding environment, and potential damage to other system components.

2. Reduced Performance:

– Wear or internal damage to the hydraulic cylinder can result in reduced performance. You may notice a decrease in the cylinder’s force output, slower operation, or difficulty in extending or retracting the cylinder. Reduced performance can be indicative of worn seals, damaged piston or rod, internal leakage, or contamination within the cylinder. Any noticeable decrease in the cylinder’s performance should be inspected and addressed to prevent further damage or system inefficiencies.

3. Abnormal Noise or Vibrations:

– Unusual noise or vibrations during the operation of a hydraulic cylinder can indicate internal wear or damage. Excessive noise, knocking sounds, or vibrations that are not typical for the system may suggest problems such as worn bearings, misalignment, or loose internal components. These signs should be investigated to identify the source of the issue and take appropriate corrective measures.

4. Excessive Heat:

– Overheating of the hydraulic cylinder is another sign of potential issues. If the cylinder feels excessively hot to the touch during normal operation, it may indicate problems such as internal leakage, fluid contamination, or inadequate lubrication. Excessive heat can lead to accelerated wear, reduced efficiency, and overall system malfunctions. Monitoring the temperature of the hydraulic cylinder is important to detect and address potential problems.

5. External Damage:

– Physical damage to the hydraulic cylinder, such as dents, scratches, or bent rods, can contribute to wear and leakage issues. External damage can compromise the integrity of the cylinder, leading to fluid leakage, misalignment, or inefficient operation. Regular inspection of the cylinder’s external condition is essential to identify any visible signs of damage and take appropriate actions.

6. Seal Failure:

– Hydraulic cylinder seals are critical components that prevent fluid leakage and maintain system integrity. Signs of seal failure include fluid leakage, reduced performance, and increased friction during cylinder operation. Damaged or worn seals should be replaced promptly to prevent further deterioration of the cylinder’s performance and potential damage to other system components.

7. Contamination:

– Contamination within the hydraulic cylinder can cause wear, damage to seals, and overall system inefficiencies. Signs of contamination include the presence of foreign particles, debris, or sludge in the hydraulic fluid or visible damage to seals and other internal components. Regular fluid analysis and maintenance practices should be implemented to prevent contamination and address any signs of contamination promptly.

8. Irregular Seal Wear:

– Hydraulic cylinder seals can wear over time due to friction, pressure, and operating conditions. Irregular seal wear patterns, such as uneven wear or excessive wear in specific areas, may indicate misalignment or improper installation. Monitoring the condition of the seals during regular maintenance can help identify potential issues and prevent premature seal failure.

It is important to address these common signs of wear or leakage promptly to prevent further damage, ensure the optimal performance of hydraulic cylinders, and maintain the overall efficiency and reliability of the hydraulic system. Regular inspection, maintenance, and timely repairs or replacements of damaged components are key to mitigating hydraulic cylinder issues and maximizing system longevity.
China manufacturer WREN Hydraulic Cylinder Series CLRG20010 Double-Acting High Tonnage Cylinder (200 ton)   vacuum pump ac system	China manufacturer WREN Hydraulic Cylinder Series CLRG20010 Double-Acting High Tonnage Cylinder (200 ton)   vacuum pump ac system
editor by CX 2023-12-31