Tag Archives: car scissor lift hydraulic

China Professional Portable Concentric Ground Hydro Post Auto Wash Cylinders Scissor Gear Two in Car Pump Lift for Truck Hydraulic Hoist Krm92 hydraulic cylinder bore size chart

Product Description


Hoist Mechanism,Dimensions & Mass(appros.)

 

L(mm) W(mm) H(mm) X(mm) MASS(kg)
1120 516 400 548 90

Hoist Cylinder and Pump Combination Specification (approx.)
 

 

 

 

 

Hoist Cylinder KRM92

Working Pressure   (MPa)

               (Kgf/cm2)

6.4

 

 

 

Gear Pump KP-55

Standard Revolution

(rpm)

800

65

Inner Diameter     (mm)

160

Discharge Volume(ml/rev.)

55

Stroke            (mm)

405

Max. Testing Pressure     (MPa)

 (Kgf/cm2)

 

14.7

Min. Close distance (mm)

666

150

Piston Rod Diameter   (mm)

45

 

Weight(kg)

 

13

Max. pressure     (MPa)

               (Kgf/cm2)

14.7

150

 

Hoist Mounting and Maximum Lifting Capacity

 

Recommended Truck G.W.(kg)

Body Length(mm)

Rear Overhang(mm)

Distance between Load Center to Hinge(mm)

Distance between trunion to Hinge(mm)

Rated Lifting Capacity(kg)

Designed Max. lifting Capacity(kg)

(including load weight)

4000-5500

3100

340

1210

1270

3000-5000

32100/60°

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Hoist
Structure: Hydraulic Jack
Capacity (Load): 1-10T
Power Source: Hydraulic
Max Height: >400mm
Condition: New
Customization:
Available

|

Customized Request

hydraulic cylinders

Choosing Hydraulic Cylinders

Typically, hydraulic cylinders are used in applications such as manufacturing machinery, construction equipment, and civil engineering. They are also used in elevators and other applications where the use of a mechanical actuator is necessary.

Piston seals

Choosing the correct piston seals for hydraulic cylinders can help to ensure the proper operation of the cylinder. Seals are designed to keep fluids and contaminants from flowing across the cylinder. However, external factors can affect their performance. In order to choose the right seals, it’s important to understand the different types.
There are two basic piston seal types. One is a double acting seal that maintains pressure on both sides of the piston. The other type is a single acting seal that maintains pressure on only one side of the piston.
Double acting piston seals are typically made of a slide ring. They maintain the pressure in a hydraulic cylinder and allow the ram to move in a controlled direction. The slide ring is normally made of a plastic material. However, it is important to select a material that is suitable for the fluid pressure that is expected.
Single acting cylinder seals are designed for cylinders where one side of the piston is under high pressure and the other side is under low pressure. These seals are usually designed to provide the best sealing characteristics.
In addition to the seal, it is important to select the right guide. A guide is a metal strip or ring that keeps the piston and the piston rod radially centered in the cylinder assembly. This guide also keeps metal-to-metal contact between the two components.
For high-pressure applications, it is recommended to use piston seals made from PTFE. These seals can withstand temperatures up to 800 degrees Celsius. They have less friction than rubber seals and are also resistant to abrasion. However, they are not as durable as thermoplastic elastomers.
The seals are designed to maintain a constant pressure for a longer period of time than other materials. In addition, they are resistant to tearing, and they stand up to high use.

Coatings for hydraulic cylinders

Various coatings for hydraulic cylinders are available in the market. The main purpose of these coatings is to provide protection against physical and chemical attacks. These coatings are usually applied externally or internally.
Plasma spray is one of the most common surface modification methods. It combines flame and arc spray to deposit metallic or ceramic materials onto the surface. This process improves the operating characteristics of actuators. It is also useful in repairing damaged surfaces.
Another popular surface treatment is liquid nitrating. It produces a hard iron nitride layer that has excellent surface hardness. It also provides a good surface resistance. It can be used as a thermal barrier coating on stationary gas turbine blades.
Hard chrome over nickel coating is also a common type of coating for hydraulic cylinders. It provides good corrosion resistance and abrasion resistance. It is plated onto the surface and then polished.
Another popular surface modification method is thermal spray. It uses engineered materials to deposit metallic or ceramic materials onto the surface. It is a cost effective solution to surface enhancement. It also eliminates the need for costly replacement parts.
In addition, WC-CoCr coatings provide good wear resistance and corrosion resistance. These coatings are particularly useful for parts that are subjected to harsh working conditions.
Ceramic plating is mostly used in the aerospace and military industries. It also reduces friction and provides heat shielding. It can also be used as an alternative to hard chrome coatings.
The most important mechanical properties are the hardness, yield strength and the tensile strength. The material selection should be based on the shape and dimensions of the object being produced. This article will discuss the most commonly used materials and give an overview of the most effective surface modification methods.hydraulic cylinders

Double-acting cylinders

Basically, hydraulic cylinders are used in a variety of applications, including engineering, industrial furnaces, and lift shafts. They are also used in subsea environments, shipbuilding, and oil & gas.
A double-acting hydraulic cylinder is a type of hydraulic cylinder that combines the best features of a single-acting cylinder with some additional advantages. These benefits include higher force, greater flexibility, and more control. Double-acting hydraulic cylinders are generally used in high-powered applications, such as lift shafts, excavation equipment, and robotics. They are also used in mobile applications, such as earthmoving equipment.
The main difference between single acting and double-acting hydraulic cylinders is the way the piston is moved up and down the cylinder bore. Double-acting cylinders use hydraulic fluid to apply pressure on both sides of the piston rod.
Another advantage of double-acting hydraulic cylinders is their ability to extend and retract without the need for an external force. In contrast, single acting cylinders require an external source to move the piston.
Double-acting hydraulic cylinders are more expensive than single-acting cylinders. This is because they have a larger housing and require more dedicated maintenance. They are also more costly to buy.
However, they are also more accurate and efficient. Double-acting cylinders work faster and can be used in virtually any application. They are also better for industrial tasks, such as lifting merchandise off conveyor belts. They can also work in an angle, and they are suitable for mobile applications.
In addition to their performance, double-acting hydraulic cylinders are more likely to be ISO compliant than single-acting cylinders. They also offer more design options.
Depending on the needs of the application, a double-acting hydraulic cylinder may be more expensive than a single-acting cylinder. This is because the piston seal must be designed to work with the fluid. The seal material is generally rubber or a rubber/fabric composite.

Stainless steel cylinders

Stainless steel hydraulic cylinders are used in numerous industries. They are known for their durability and rust resistance. They are used in industrial hydraulics applications, as well as in the food and beverage processing industry. They also help processing facilities meet industry standards.
Stainless steel hydraulic cylinders are made of a stainless steel alloy that contains at least 10% chromium. The chromium oxide forms a thin layer on the steel’s surface, contributing to its corrosion resistance. The alloy also develops a non-porous surface that prevents bacteria from lingering. It also contributes to the steel’s ability to self-repair.
Stainless steel hydraulic cylinders are widely used in the food and beverage processing industry. They are particularly useful for moving heavy loads. They can withstand frequent cleaning operations. They also provide excellent strength. They are commonly used in chocolate molding machines and cold press juicers.
Stainless steel hydraulic cylinders are available from Maverick Machine & Hydraulics. They can be customized to meet your specifications. They can be manufactured with a satin finish or a streamlined design. They can also be custom colored. The manufacturer will provide full service and a competitive price.
Hydraulic cylinders are used to push, pull, or push-pull heavy loads. They are designed to withstand extreme temperatures. They are also available in single and double-acting configurations. They are commonly used in pharmaceutical, food, chemical, and marine applications. They are also used on coastal power generation plants and pipeline risers. They are also used in water treatment plants. They can also be used on oil platforms.
There are two types of hydraulic cylinders, which are single-acting and double-acting. The single-acting type has a single fluid chamber, while the double-acting model has more fluid in the pressurized chamber. The single-acting cylinder is more affordable to maintain and easier to control.hydraulic cylinders

Pivot rod style cylinders

Choosing hydraulic cylinders requires a great deal of attention to detail. You will need to consider the following factors: cylinder length, rod size, rod seals, bearing loads, and the type of cylinder you need.
Hydraulic cylinders are used in a variety of applications, such as lifting and lowering buckets, as well as jack knifing and metal sheet shearing machines. They are also used in hydraulic bending machines and earth-moving equipment.
The main sleeve or barrel of a hydraulic cylinder extends to its maximum stroke. It can be either single or double acting, and can be either stationary or pivoting. This allows a cylinder to move a load in a straight line or a circular path.
Cylinders have a variety of mounting styles, including clevises, flanges, and side mounts. Flange mounts are generally used in force-transfer applications where the cylinder must be parallel with the load. Flanges come in several shapes and sizes, including a square flange, a rectangular head, or a cap. Aside from transferring load, they also absorb force along the cylinder centerline.
Cylinders have a variety and range of seals, which are used to prevent hydraulic fluid leakage past the interface. These seals are made of various materials, including metal and elastomeric seals. The materials used for these seals depend on the application. These seals also vary in terms of pressure, temperature, and temperature changes.
Clevises and flanges are two common mounting styles for hydraulic cylinders. They are used to provide structural support for bolts. These mounts also work to absorb force along the cylinder’s centerline. These mounting styles have less rod bearing loads than other types, but they must be properly aligned with the load.
China Professional Portable Concentric Ground Hydro Post Auto Wash Cylinders Scissor Gear Two in Car Pump Lift for Truck Hydraulic Hoist Krm92   hydraulic cylinder bore size chartChina Professional Portable Concentric Ground Hydro Post Auto Wash Cylinders Scissor Gear Two in Car Pump Lift for Truck Hydraulic Hoist Krm92   hydraulic cylinder bore size chart
editor by CX 2024-03-27

China supplier 4000kg Hydraulic Oil Cylinders for Ground Scissor Car Lift with Alignment Machine with Best Sales

Product Description

4000kg Hydraulic oil cylinders for ground scissor car lift with alignment machine

Product Parameters

Type JL6000D
Lifting weight 4500kg
Secondary lifting 3500kg(77161b)
Initial height 200mm(7.9in)
Lifting height 1680mm(66in)
Secondary lift height 450mm(17.7in)
first layer length 4500-5700mm(177.2-224.4in)
second layer length 1515-1680mm(59.6-66.1in)
first layer width 670mm(26in)
second layer width 600mm(23.6in)
Power voltage 220v/380v
Air supply voltage 6-8kg/cm2

Detailed Photos

Company Profile

HangZhou CHINAMFG Automobile Testing Equipment Co.,Ltd. is a professional OEM/ODM manufacturer engaged in research, development, design, manufacturing, sales and service of auto repair and maintenance machines and tools. We are located in coastal city HangZhou CIty,ZheJiang Province,P.R.China with convenient traffic access. Our factory covers an area of more than 10,000 square meters. We have more than 15 years’ experience in manufacturing onground/underground scissor car lift, 2 post/4 post car lift, 3D wheel alignment system, 3D wheel aligner, tyre changer, wheel balancer, car frame straightening/denting bench table machine, washing machine and other related auto repair and maintenance machines and tools. Dedicated to strict quality control system and high level pre-sale/after-sale service, our experienced staff members are always available to take care your enquiries and give you the right solution. Our company has adopted a series of advanced equipment including 10,000 watt laser cutting machine, digital bending machine, CNC center drilling machine, automatic sand blasting spray line, robot welding machine. We have obtained certificates of CCC,ISO9001,CE,Patent,etc. Selling well in all cities and provinces in China, we also export to overseas countries and regions as Europe, North/South America, Russia, Southeast Asia,India,etc. We also welcome OEM/ODM orders. Our mission is: Quality first, Service foremost, and Innovation paramount. We will continue to work hard to better serving the domestic and international market.
We sincerely look CHINAMFG to working with you!
 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Provide Installation Videos/Online Installation Gu
Warranty: 18 Months
Type: Six Cylinder Hydraulic Lift
Lifting Capacity: 4T
Driving Type: Hydraulic
Certification: CE, ISO, RoHS, GS
Samples:
US$ 3400/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

What advancements in hydraulic cylinder technology have improved energy efficiency?

Advancements in hydraulic cylinder technology have led to significant improvements in energy efficiency, allowing hydraulic systems to operate more efficiently and reduce energy consumption. These advancements aim to minimize energy losses, optimize system performance, and enhance overall efficiency. Here’s a detailed explanation of some key advancements in hydraulic cylinder technology that have improved energy efficiency:

1. Efficient Hydraulic Circuit Design:

– The design of hydraulic circuits has evolved to improve energy efficiency. Advancements in circuit design techniques, such as load-sensing, pressure-compensated systems, or variable displacement pumps, help match the hydraulic power output to the actual load requirements. These designs reduce unnecessary energy consumption by adjusting the flow and pressure levels according to the system demands, rather than operating at a fixed high pressure.

2. High-Efficiency Hydraulic Fluids:

– The development of high-efficiency hydraulic fluids, such as low-viscosity or synthetic fluids, has contributed to improved energy efficiency. These fluids offer lower internal friction and reduced resistance to flow, resulting in decreased energy losses within the system. Additionally, advanced fluid additives and formulations enhance lubrication properties, reducing friction and optimizing the overall efficiency of hydraulic cylinders.

3. Advanced Sealing Technologies:

– Seal technology has advanced significantly, leading to improved energy efficiency in hydraulic cylinders. High-performance seals, such as low-friction or low-leakage seals, minimize internal leakage and friction losses. Reduced internal leakage helps maintain system pressure more effectively, resulting in less energy waste. Additionally, innovative sealing materials and designs enhance durability and extend seal life, reducing the need for frequent maintenance and replacement.

4. Electro-Hydraulic Control Systems:

– The integration of advanced electro-hydraulic control systems has greatly contributed to energy efficiency improvements. By combining electronic control with hydraulic power, these systems enable precise control over cylinder operation, optimizing energy usage. Proportional or servo valves, along with position or force feedback sensors, allow for accurate and responsive control, ensuring that hydraulic cylinders operate at the required level of performance while minimizing energy waste.

5. Energy Recovery Systems:

– Energy recovery systems, such as hydraulic accumulators, have been increasingly utilized to improve energy efficiency in hydraulic cylinder applications. Accumulators store excess energy during low-demand periods and release it when there is a peak demand, reducing the need for the hydraulic pump to provide the full power continuously. By utilizing stored energy, these systems can significantly reduce energy consumption and improve overall system efficiency.

6. Smart Monitoring and Control:

– Advancements in smart monitoring and control technologies have enabled real-time monitoring of hydraulic systems, allowing for optimized energy usage. Integrated sensors, data analytics, and control algorithms provide insights into system performance and energy consumption, enabling operators to make informed decisions and adjustments. By identifying inefficiencies or suboptimal operating conditions, energy consumption can be minimized, leading to improved energy efficiency.

7. System Integration and Optimization:

– The integration and optimization of hydraulic systems as a whole have played a significant role in improving energy efficiency. By considering the entire system layout, component sizing, and interaction between different elements, engineers can design hydraulic systems that operate in the most energy-efficient manner. Proper sizing of components, minimizing pressure drops, and reducing unnecessary piping or valve restrictions all contribute to improved energy efficiency of hydraulic cylinders.

8. Research and Development:

– Ongoing research and development efforts in the field of hydraulic cylinder technology continue to drive energy efficiency advancements. Innovations in materials, component design, system modeling, and simulation techniques help identify areas for improvement and optimize energy usage. Additionally, collaboration between industry stakeholders, research institutions, and regulatory bodies fosters the development of energy-efficient hydraulic cylinder technologies.

In summary, advancements in hydraulic cylinder technology have resulted in notable improvements in energy efficiency. Efficient hydraulic circuit designs, high-efficiency hydraulic fluids, advanced sealing technologies, electro-hydraulic control systems, energy recovery systems, smart monitoring and control, system integration and optimization, as well as ongoing research and development efforts, all contribute to reducing energy consumption and enhancing the overall energy efficiency of hydraulic cylinders. These advancements not only benefit the environment but also offer cost savings and improved performance in various hydraulic applications.

hydraulic cylinder

Utilizing Hydraulic Cylinders in Conjunction with Alternative Energy Sources

Hydraulic cylinders can indeed be used in conjunction with alternative energy sources. The versatile nature of hydraulic systems allows them to be integrated with various alternative energy technologies to enhance efficiency, control, and power generation. Let’s explore some examples of how hydraulic cylinders can be utilized alongside alternative energy sources:

  1. Hydraulic Energy Storage: Hydraulic cylinders can be employed in energy storage systems that utilize alternative energy sources such as renewable sources (e.g., solar or wind) or waste energy recovery. These systems convert excess energy into hydraulic potential energy by pumping fluid into a high-pressure accumulator. When the energy is needed, the pressurized fluid is released, driving the hydraulic cylinder and generating mechanical power.
  2. Wave and Tidal Energy Conversion: Hydraulic cylinders can be utilized in wave and tidal energy conversion systems. These systems harness the power of ocean waves or tidal currents and convert it into usable energy. Hydraulic cylinders, along with associated pumps and valves, can be used to capture and control the energy from the waves or tides, driving the cylinders and generating mechanical power or producing electricity.
  3. Hydroelectric Power Generation: Hydraulic cylinders play a crucial role in traditional hydroelectric power generation. However, alternative approaches such as small-scale or micro-hydropower systems can also benefit from hydraulic cylinders. These systems utilize natural or man-made water flows to drive turbines connected to hydraulic cylinders, which then convert the hydraulic energy into mechanical power or electricity.
  4. Hydraulic Actuation in Wind Turbines: Hydraulic cylinders can be employed in wind turbines to enhance performance and control. For example, hydraulic pitch control systems use hydraulic cylinders to adjust the pitch angle of wind turbine blades, optimizing their aerodynamic performance based on wind conditions. This allows for efficient power generation and protection against excessive wind loads.
  5. Geothermal Energy Extraction: Geothermal energy extraction involves utilizing the natural heat from the Earth’s interior to generate power. Hydraulic cylinders can be utilized in geothermal systems to control and regulate fluid flow, allowing for efficient extraction and utilization of geothermal energy. They can also be used in geothermal heat pumps for heating and cooling applications.

In summary, hydraulic cylinders can be effectively utilized in conjunction with alternative energy sources to enhance energy storage, power generation, and control. Whether it’s through hydraulic energy storage systems, wave and tidal energy conversion, hydroelectric power generation, hydraulic actuation in wind turbines, or geothermal energy extraction, hydraulic cylinders offer versatile and efficient solutions for harnessing and utilizing alternative energy sources.

hydraulic cylinder

How do hydraulic cylinders accommodate variations in stroke length and force requirements?

Hydraulic cylinders are designed to accommodate variations in stroke length and force requirements, providing flexibility and adaptability for different applications. They can be tailored to meet specific needs by considering factors such as piston diameter, rod diameter, hydraulic pressure, and cylinder design. Here’s a detailed explanation of how hydraulic cylinders accommodate variations in stroke length and force requirements:

1. Cylinder Size and Design:

– Hydraulic cylinders come in various sizes and designs to accommodate different stroke lengths and force requirements. The cylinder’s diameter, piston area, and rod diameter are key factors that determine the force output. Larger cylinder diameters and piston areas can generate greater force, while smaller diameters are suitable for applications requiring lower force. By selecting the appropriate cylinder size and design, stroke lengths and force requirements can be effectively accommodated.

2. Piston and Rod Configurations:

– Hydraulic cylinders can be designed with different piston and rod configurations to accommodate variations in stroke length. Single-acting cylinders have a single piston and can provide a stroke in one direction. Double-acting cylinders have a piston on both sides, allowing for strokes in both directions. Telescopic cylinders consist of multiple stages that can extend and retract, providing a longer stroke length compared to standard cylinders. By selecting the appropriate piston and rod configuration, the desired stroke length can be achieved.

3. Hydraulic Pressure and Flow:

– The hydraulic pressure and flow rate supplied to the cylinder play a crucial role in accommodating variations in force requirements. Increasing the hydraulic pressure increases the force output of the cylinder, enabling it to handle higher force requirements. By adjusting the pressure and flow rate through hydraulic valves and pumps, the force output can be controlled and matched to the specific requirements of the application.

4. Customization and Tailoring:

– Hydraulic cylinders can be customized and tailored to meet specific stroke length and force requirements. Manufacturers offer a wide range of cylinder sizes, stroke lengths, and force capacities to choose from. Additionally, custom-designed cylinders can be manufactured to suit unique applications with specific stroke length and force demands. By working closely with hydraulic cylinder manufacturers, it is possible to obtain cylinders that precisely match the required stroke length and force requirements.

5. Multiple Cylinders and Synchronization:

– In applications that require high force or longer stroke lengths, multiple hydraulic cylinders can be used in combination. By synchronizing the movement of multiple cylinders through the hydraulic system, the stroke length and force output can be effectively increased. Synchronization can be achieved using mechanical linkages, electronic controls, or hydraulic circuitry, ensuring coordinated movement and force distribution across the cylinders.

6. Load-Sensing and Pressure Control:

– Hydraulic systems can incorporate load-sensing and pressure control mechanisms to accommodate variations in force requirements. Load-sensing systems monitor the load demand and adjust the hydraulic pressure accordingly, ensuring that the cylinder delivers the required force without exerting excessive force. Pressure control valves regulate the pressure within the hydraulic system, allowing for precise control and adjustment of the force output based on the application’s needs.

7. Safety Considerations:

– When accommodating variations in stroke length and force requirements, it is essential to consider safety factors. Hydraulic cylinders should be selected and designed with an appropriate safety margin to handle unexpected loads or variations in operating conditions. Safety mechanisms such as overload protection valves and pressure relief valves can be incorporated to prevent damage or failure in situations where the force limits are exceeded.

By considering factors such as cylinder size and design, piston and rod configurations, hydraulic pressure and flow, customization options, synchronization, load-sensing, pressure control, and safety considerations, hydraulic cylinders can effectively accommodate variations in stroke length and force requirements. This flexibility allows hydraulic cylinders to be tailored to meet the specific demands of a wide range of applications, ensuring optimal performance and efficiency.

China supplier 4000kg Hydraulic Oil Cylinders for Ground Scissor Car Lift with Alignment Machine   with Best Sales China supplier 4000kg Hydraulic Oil Cylinders for Ground Scissor Car Lift with Alignment Machine   with Best Sales
editor by CX 2024-02-08

China Hot selling Double Acting Small Bore Hydraulic Cylinder for Car Lift Scissor vacuum pump electric

Product Description

small piston double acting hydraulic cylinder

 

Product Description

 

Eaton, parker, hercules, prince, cross type double acting hydraulic cylinder are used for Trailer, Agricultural Machinery, Garbage Truck, Landing Platform etc.

Tsingshi hydraulic Customers,  MAN, JAC, VOLVO, SHACMAN, DAF, JMC,  HUNO, CIMC, SINOTRUK, TATRA,BENS,XIHU (WEST LAKE) DIS.FENG,  FOTON,etc.

1.Piston rod electroplate hard chrome;
2.lighter and easier to maintenance double acting hydraulic cylinder;
3.High quality alloy seamless steel pipe have better mechanical properties;
4.The world famous brands of seals, such as Parker, Merkel, Hallite, Kaden, etc;
5.World-class processing technology ensures stable and reliable quality.

                  

NO ITEM double acting hydraulic cylinder DATA
1 Material Carbon Steel, Alloy Steel, 27SiMn,45#,20#,etc
2 Honed tube 40-300mm, Heat treatment, honing, rolling
3 Honed tube 30-280mm, plated nickel or hard Chrome or ceramic
4 Seal kit Parker, Merkel, Hallite, Kaden, etc
5 Coating Sandblasting, primer paint, middle paint, finish paint,
Color can paint according to customer demands.
6 Technology double acting hydraulic cylinder
7 Mounting type Pin-eye , flange, trunnion mount,ball mount, screw thread.
FC, FE, FEE, FSE,TPIN
8 Working medium Hydraulic Oil
9 Working pressure 16-20Mpa double acting hydraulic cylinder
10 Temperature range -50°C to +100°C

Detailed Photos


 

Company Profile

Tsingshi hydraulic is a hydraulic telescopic cylinder for dump tipper truck company which takes up with hydraulic design, R&D, manufacturer, sell and service hydraulic products-double acting hydraulic cylinder.

-double acting hydraulic cylinder Certification ISO9001 TS16949, etc;
-mini double acting hydraulic cylinder Export to North America, South America, Australia, South Korea, Southeast Asia, South Africa, Europe, Middle East, etc;
-ODM&OEM small double acting hydraulic cylinder according to client’s requirements;
-Professional manufacturer& supplier of Hydraulic Cylinders over 30 years;
-The micro double acting hydraulic cylinder can be used for Dump Truck, Tipper Truck, Trailer, Agricultural Machinery, Garbage Truck,Landing Platform etc; We can produce the follow brand hydraulic cylinder. HYVA, BINOTTO, EDBRO, PENTA, MAILHOT, CUSTOM HOIST, MUNCIE, METARIS, HYDRAULEX GLOBAL, HYCO, PARKER, COMMERCIAL HYDRAULICS, MEILLER. WTJX, XT, JX, HCIC, ZX, SZ, SJ.

 

CUSTOMERS PHOTOS

 

QUALITY GUARANTEE

 

HIGH QUALITITY GUARANTEE-double acting hydraulic cylinder
-7*24 service.
-Competitive price.
-Professional technical team.
-Perfect after-sales service system.
-ODM&OEM Hydraulic Cylinder according to customer needs.
-Strong Hydraulic Cylinder production capacity to ensure fast delivery.
-Guarantee Quality. Every process must be inspected, all products need be tested before leaving the factory.

<hydraulic cylinder double acting Leak Test

<mini hydraulic cylinder Buffer Test

<small hydraulic cylinder Reliability Test

<micro hydraulic cylinder Full Stroke Test

<mini double acting hydraulic cylinder Operation Test

<micro double acting hydraulic cylinder Pressure Tight Test

<small double acting hydraulic cylinder Load Efficiency Test
<double action hydraulic cylinder Start-up Pressure Test
<double acting hydraulic cylinder Testing the Effect of Limit

SALES AND SERVICE

 



 

PRODUCTS SERIES

 

ONE WORLD ONE LOVE

 


 

 

Certification: CE, ISO/Ts16949
Pressure: Medium Pressure
Work Temperature: Normal Temperature
Acting Way: Double Acting
Working Method: Straight Trip
Adjusted Form: Regulated Type
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

How do hydraulic cylinders handle the challenges of minimizing friction and wear?

Hydraulic cylinders employ several mechanisms and techniques to effectively minimize friction and wear, ensuring optimal performance and longevity. Minimizing friction and wear is crucial for hydraulic cylinders as it helps to maintain efficiency, reduce energy consumption, and prevent premature failure. Here’s a detailed explanation of how hydraulic cylinders handle the challenges of minimizing friction and wear:

1. Lubrication:

– Proper lubrication is essential for minimizing friction and wear in hydraulic cylinders. Lubricating fluids, such as hydraulic oils, are used to create a thin film between moving surfaces, reducing direct metal-to-metal contact. This lubricating film acts as a protective barrier, reducing friction and preventing wear. Regular maintenance practices include monitoring and maintaining the appropriate lubricant levels to ensure optimal lubrication and minimize frictional losses.

2. Surface Finishes:

– The surface finishes of components in hydraulic cylinders play a crucial role in minimizing friction and wear. Smoother surface finishes, achieved through precision machining, grinding, or the application of specialized coatings, reduce surface roughness and frictional resistance. By minimizing surface irregularities, the risk of wear and friction-induced damage is significantly reduced, resulting in improved efficiency and extended component life.

3. High-Quality Sealing Systems:

– Well-designed and high-quality sealing systems are crucial for minimizing friction and wear in hydraulic cylinders. Seals prevent fluid leakage and contamination while maintaining proper lubrication. Advanced sealing materials, such as polyurethane or composite materials, offer excellent wear resistance and low friction characteristics. Optimal seal design and proper installation ensure effective sealing, minimizing friction and wear between the piston and cylinder bore.

4. Proper Alignment and Clearances:

– Hydraulic cylinders must be properly aligned and have appropriate clearances to minimize friction and wear. Misalignment or excessive clearances can result in increased friction and uneven wear, leading to premature failure. Proper installation, alignment, and maintenance practices, including regular inspection and adjustment of clearances, help ensure smooth and even movement of the piston within the cylinder, reducing friction and wear.

5. Filtration and Contamination Control:

– Effective filtration and contamination control are essential for minimizing friction and wear in hydraulic cylinders. Contaminants, such as particles or moisture, can act as abrasive agents, accelerating wear and increasing friction. By implementing robust filtration systems and proper maintenance practices, hydraulic systems can prevent the ingress of contaminants, ensuring clean and properly lubricated components. Clean hydraulic fluids help minimize wear and friction, contributing to improved performance and longevity.

6. Material Selection:

– The selection of appropriate materials for hydraulic cylinder components is crucial in minimizing friction and wear. Components subject to high frictional forces, such as pistons and cylinder bores, can be made from materials with excellent wear resistance, such as hardened steel or composite materials. Additionally, selecting materials with low coefficients of friction helps reduce frictional losses. Proper material selection ensures durability and minimized wear in critical components of hydraulic cylinders.

7. Maintenance and Regular Inspection:

– Regular maintenance and inspection practices are vital for identifying and addressing potential issues that could lead to increased friction and wear in hydraulic cylinders. Scheduled maintenance includes lubrication checks, seal inspections, and monitoring of clearances. By promptly detecting and rectifying any signs of wear or misalignment, hydraulic cylinders can be kept in optimal condition, minimizing friction and wear throughout their operational lifespan.

In summary, hydraulic cylinders employ various strategies to handle the challenges of minimizing friction and wear. These include proper lubrication, employing suitable surface finishes, utilizing high-quality sealing systems, ensuring proper alignment and clearances, implementing effective filtration and contamination control measures, selecting appropriate materials, and conducting regular maintenance and inspections. By implementing these practices, hydraulic cylinders can minimize friction and wear, ensuring smooth and efficient operation while extending the overall lifespan of the system.

hydraulic cylinder

Ensuring Stable Performance of Hydraulic Cylinders Under Fluctuating Loads

Hydraulic cylinders are designed to provide stable performance even under fluctuating loads. They achieve this through various mechanisms and features that allow for efficient load control and compensation. Let’s explore how hydraulic cylinders ensure stable performance under fluctuating loads:

  1. Piston Design: The piston inside the hydraulic cylinder plays a crucial role in load control. It is typically equipped with seals and rings that prevent leakage of hydraulic fluid and ensure effective transfer of force. The piston design may incorporate features such as stepped or tandem pistons, which provide enhanced load-bearing capabilities and improved stability by distributing the load across multiple surfaces.
  2. Cylinder Cushioning: Hydraulic cylinders often incorporate cushioning mechanisms to minimize the impact and shock caused by fluctuating loads. Cushioning can be achieved through various methods, such as adjustable cushion screws, hydraulic cushioning valves, or elastomeric cushioning rings. These mechanisms slow down the piston’s movement near the end of the stroke, reducing the impact and preventing sudden stops that could lead to instability.
  3. Pressure Compensation: Fluctuating loads can result in pressure variations within the hydraulic system. To ensure stable performance, hydraulic cylinders are equipped with pressure compensation mechanisms. These mechanisms maintain a consistent pressure level in the system, regardless of load changes. Pressure compensation can be achieved through the use of pressure relief valves, compensating pistons, or pressure-compensated flow control valves.
  4. Flow Control: Hydraulic cylinders often incorporate flow control valves to regulate the speed of the cylinder’s movement. By controlling the flow rate of hydraulic fluid, the cylinder’s motion can be adjusted to match the changing load conditions. Flow control valves allow for smooth and controlled movement, preventing abrupt changes that could lead to instability.
  5. Feedback Systems: To ensure stable performance under fluctuating loads, hydraulic cylinders can be integrated with feedback systems. These systems provide real-time information on the cylinder’s position, velocity, and force. By continuously monitoring these parameters, the hydraulic system can make immediate adjustments to maintain stability and compensate for load fluctuations. Feedback systems can include position sensors, pressure sensors, or load sensors, depending on the specific application.
  6. Proper Sizing and Selection: Ensuring stable performance under fluctuating loads starts with proper sizing and selection of hydraulic cylinders. It is crucial to choose cylinders with appropriate bore size, rod diameter, and stroke length to match the anticipated load conditions. Oversized or undersized cylinders can lead to instability and reduced performance. Proper sizing also involves considering factors such as the required force, speed, and duty cycle of the application.

In summary, hydraulic cylinders ensure stable performance under fluctuating loads through features such as piston design, cushioning mechanisms, pressure compensation, flow control, feedback systems, and proper sizing and selection. These mechanisms and considerations allow hydraulic cylinders to provide consistent and controlled movement, even in dynamic load conditions, resulting in reliable and stable performance.

hydraulic cylinder

Which industries and machinery commonly use hydraulic cylinders for power transmission?

Hydraulic cylinders are widely used in various industries and machinery for power transmission due to their ability to generate high force, precise control, and reliable operation. They play a crucial role in converting hydraulic energy into mechanical force and motion. Here are the detailed industries and machinery that commonly utilize hydraulic cylinders for power transmission:

1. Construction and Heavy Equipment:

– Hydraulic cylinders are extensively used in the construction industry for tasks involving heavy lifting, pushing, and positioning. They are employed in cranes, excavators, loaders, bulldozers, and other heavy equipment to lift and move heavy loads, operate attachments, and manipulate construction materials. Hydraulic cylinders provide the necessary force and control for tasks such as lifting and lowering buckets, extending and retracting booms, and tilting blades.

2. Material Handling and Logistics:

– In material handling and logistics applications, hydraulic cylinders are vital components for the movement and manipulation of goods. They are used in forklifts, stackers, palletizers, and conveyor systems to lift, lower, and position loads with precision. Hydraulic cylinders enable the efficient transfer of heavy objects, facilitate stacking and sorting operations, and contribute to the smooth operation of material handling equipment.

3. Agriculture and Farming:

– The agricultural industry relies on hydraulic cylinders for various tasks in farming equipment. Tractors, harvesters, sprayers, and loaders utilize hydraulic cylinders to perform functions such as lifting and lowering implements, adjusting the position of attachments, and steering operations. Hydraulic cylinders enable efficient and precise control in tasks like plowing, tilling, harvesting, and baling, enhancing productivity and convenience in agricultural operations.

4. Mining and Extraction:

– Hydraulic cylinders are extensively utilized in the mining and extraction industry for their ability to handle heavy loads and operate in challenging environments. They are employed in mining equipment such as dump trucks, loaders, and excavators for tasks like ore extraction, rock breaking, and material transport. Hydraulic cylinders provide the force required for excavating, loading, and dumping operations, contributing to the efficiency and productivity of mining operations.

5. Manufacturing and Industrial Machinery:

– Hydraulic cylinders are an integral part of various manufacturing and industrial machinery. They are utilized in presses, stamping machines, injection molding machines, and metal forming equipment to apply force for shaping, bending, and pressing operations. Hydraulic cylinders enable precise control over the force and speed required for manufacturing processes, ensuring accurate and consistent results.

6. Automotive and Transportation:

– Hydraulic cylinders are employed in the automotive and transportation industry for a range of applications. They are used in vehicle lifting systems, such as car lifts and hydraulic jacks, for maintenance and repairs. Hydraulic cylinders are also utilized in bus doors, truck tailgates, and cargo handling systems to provide controlled movement and positioning. Additionally, hydraulic suspension systems in trucks, buses, and trailers use hydraulic cylinders for load leveling and stability.

7. Aerospace and Aviation:

– The aerospace and aviation industry relies on hydraulic cylinders for various applications, including aircraft landing gear, wing flaps, and flight control systems. Hydraulic cylinders provide the necessary force and precise control for extending and retracting landing gear, adjusting wing surfaces, and actuating control surfaces. They contribute to the safe and efficient operation of aircraft, ensuring reliable performance during takeoff, landing, and flight maneuvers.

8. Marine and Offshore:

– Hydraulic cylinders are utilized in marine and offshore equipment for a wide range of tasks. They are found in ship and boat steering systems, hatch covers, cranes, winches, and anchor handling equipment. Hydraulic cylinders enable precise control and powerful force transmission in maritime applications, supporting navigation, cargo handling, and offshore operations.

In summary, hydraulic cylinders are commonly used in industries such as construction, material handling, agriculture, mining, manufacturing, automotive, aerospace, marine, and more. They are integral components in machinery and equipment that require reliable power transmission, precise control, and the ability to handle heavy loads. The versatile nature of hydraulic cylinders allows them to be adapted to various applications, contributing to increased efficiency, productivity, and safety in numerous industries.

China Hot selling Double Acting Small Bore Hydraulic Cylinder for Car Lift Scissor   vacuum pump electricChina Hot selling Double Acting Small Bore Hydraulic Cylinder for Car Lift Scissor   vacuum pump electric
editor by CX 2023-10-15